Fine-grained Information Flow Analysis for a λ-calculus with Sum Types

Vincent Simonet
INRIA Rocquencourt - Projet Cristal

(To appear at CSFW'15)

Type Based Information Flow Analysis

Information flow analysis is concerned with statically determining the dependencies between the inputs and outputs of a program. It allows establishing instances of a non-interference property that may address secrecy and integrity issues.

Types seem to be most suitable for static analysis of information flow:

- They may serve as specification language,
- They offer automated verification of code (if type inference is available),
- Such an analysis has no run-time cost.
- Non-interference results are easy to state in a type based framework.

Annotated types

In these systems, types are annotated with security levels chosen in a lattice, e.g. $\mathcal{L}=\{P u b \leq S e c\}$.

Type constructors for base values (e.g. integers or enumerated constants) typically carry one security level representing all of the information attached to the value. Such an approximation may be too restrictive:

$$
\begin{array}{r}
\text { let } t=\text { if } x \text { then (if } y \text { then } A \text { else } B \text {) } \\
\text { else (if } z \text { then } A \text { else } D \text {) } \\
\text { let } u=t \text { case }[A, B \mapsto 1 \mid D \mapsto 0]
\end{array}
$$

Basic analysis of sums

Towards a more accurate analysis of sums

Information Flow Analysis

- λ-calculus with Sums

Typing λ_{+}and λ_{+}^{2}
Application to exceptions

λ-calculus with Sums

λ_{+}: a λ-calculus with sum types

$e::=$	expression
k	(integer constant)
x	(program variable)
$\lambda x . e$	(abstraction)
$e e$	(application)
(e, e)	(pair construction)
$\pi_{j} e$	(pair projection, $j \in\{1,2\}$)
$c e$	(sum construction)
$\bar{c} e$	(sum destruction)
e case $[h\|\ldots\| h]$	(sum case)
$h::=C: x \mapsto e$	case handler
$c \in \mathcal{C}$	constructor
$C \subseteq \mathcal{C}$	constructor set

Semantics of λ_{+}

$$
\begin{align*}
\left(\lambda x \cdot e_{1}\right) e_{2} & \rightarrow e_{1}\left[x \Leftarrow e_{2}\right] \\
\pi_{j}\left(e_{1}, e_{2}\right) & \rightarrow e_{j} \tag{proj}\\
\bar{c}(c e) & \rightarrow e^{(\beta)} \tag{destr}\\
(c e) \text { case }\left[\ldots\left|C_{j}: x_{j} \mapsto e_{j}\right| \ldots\right] & \rightarrow e_{j}\left[x_{j} \Leftarrow c e\right] \quad \text { if } c \in C_{j} \tag{case}
\end{align*}
$$

We choose a call-by-name evaluation strategy :

$$
E::=[] e\left|\pi_{j}[]\right| \bar{c}[] \mid[] \text { case } \vec{h}
$$

Introducing brackets

Establishing a non-interference result requires reasoning about two expressions and exhibiting a bisimulation between their executions.
Thus, we design a technical extension of λ_{+}which allows to reason about two expressions that share some sub-terms throughout a reduction :

$$
e::=\ldots \mid\langle e \mid e\rangle
$$

(We do not allow nesting $\langle\cdot \mid \cdot\rangle$ constructs.)

Encoding two λ_{+}terms in a λ_{+}^{2} one

Brackets encode the differences between two programs, i.e. their "secret" parts. The reduction rules provide an explicit description of information flow, and must be made as precise as possible.

Semantics of λ_{+}^{2} : a first attempt

In λ_{+}^{2} semantics, each language construct is dealt with by two rules :

- A standard one, "identical" to that of λ_{+},
- A lift one that moves brackets when they block reduction.

$$
\begin{align*}
\left(\lambda x . e_{1}\right) e_{2} & \rightarrow e_{1}\left[x \Leftarrow e_{2}\right] \\
\left\langle e_{1} \mid e_{2}\right\rangle e & \rightarrow\left\langle e_{1}\lfloor e\rfloor_{1} \mid e_{2}\lfloor e\rfloor_{2}\right\rangle \\
(c e) \text { case }\left[\ldots\left|C_{j}: x_{j} \mapsto e_{j}\right| \ldots\right] & \rightarrow e_{j}\left[x_{j} \Leftarrow c e\right] \quad \text { if } c \in C_{j} \tag{case}\\
\left\langle e_{1} \mid e_{2}\right\rangle \text { case } \vec{h} & \rightarrow\left\langle e_{1} \text { case }\lfloor\vec{h}\rfloor_{1}\right. \tag{lift-case}\\
& \left.\mid e_{2} \text { case }\lfloor\vec{h}\rfloor_{2}\right\rangle
\end{align*}
$$

Semantics of λ_{+}^{2} : more accurate treatment of case

With the previous semantics, an expression of the form $\left\langle c e_{1} \mid c e_{2}\right\rangle$ (or even $\left\langle c_{1} e_{1} \mid c_{2} e_{2}\right\rangle$ with c_{1} and c_{2} in the same C_{j}) cannot be matched without applying (lift-case). We refine the semantics as follows:

$$
\begin{array}{rlrlr}
e \text { case }\left[\ldots\left|C_{j}: x_{j} \mapsto e_{j}\right| \ldots\right] & \rightarrow & e_{j}\left[x_{j} \Leftarrow e\right] & \text { if } e \downarrow C_{j} & \text { (case) } \\
\left\langle e_{1} \mid e_{2}\right\rangle \text { case } \vec{h} \rightarrow & \left\langle e_{1} \text { case }\lfloor\vec{h}\rfloor_{1}\right. & \text { otherwise } & \text { (lift-case) } \tag{lift-case}\\
& & \left.\mid e_{2} \text { case }\lfloor\vec{h}\rfloor_{2}\right\rangle &
\end{array}
$$

The auxiliary predicate $e \downarrow C$ (read: e matches C) is defined by:

$$
\frac{c \in C}{c e \downarrow C} \quad \frac{c_{1} \in C \quad c_{2} \in C}{\left\langle c_{1} e_{1} \mid c_{2} e_{2}\right\rangle \downarrow C}
$$

Simulation

Correctness

$$
\text { If } e \rightarrow e^{\prime} \text { then }\left\{\begin{array}{c}
\lfloor e\rfloor_{1} \rightarrow=\left\lfloor e^{\prime}\right\rfloor_{1} \\
\lfloor e\rfloor_{2} \rightarrow\left\lfloor e^{\prime}\right\rfloor_{2} \\
\left(\lambda_{+}^{2}\right)
\end{array}\right.
$$

Completeness

$$
\text { If }\left\{\begin{array}{c}
e_{1} \rightarrow^{*} n_{1} \\
e_{2} \rightarrow^{*} n_{2}
\end{array} \text { then } \llbracket e_{1} \mid e_{2} \rrbracket \rightarrow^{*} n\right.
$$

Information Flow Analysis
λ-calculus with Sums

- Typing λ_{+}and λ_{+}^{2}

Application to exceptions

Typing λ_{+}and λ_{+}^{2}

Base type system

$$
\begin{array}{rlr}
t & ::=\text { int }|t \rightarrow t| t \times t \mid r & \text { type } \\
a & ::=\text { Abs } \mid \operatorname{Pre} t & \text { alternative } \\
r & ::=\{c \mapsto a\}_{c \in \mathcal{C}} & \text { row }
\end{array}
$$

A row r is a family of alternatives a indexed by constructors c. It indicates for every constructor c if the given expression may ($\operatorname{Pre} t$) or may not (Abs) produce a value whose head constructor is c.

Subtyping (\leq) is defined by the following axioms:

$$
\ominus \rightarrow \oplus \quad \oplus \times \oplus \quad\{c \mapsto \oplus\} \quad \text { Abs } \leq \text { Pre } * \quad \text { Pre } \oplus
$$

We denote by $r_{\mid C}$ the row r^{\prime} such that $r^{\prime}(c)= \begin{cases}r(c) & \text { if } c \in C \\ \text { Abs } & \text { otherwise }\end{cases}$

Base type system : typing rules

InT
$\Gamma \vdash k:$ int

VAR
$\Gamma \vdash x: \Gamma(x)$

Abs
$\frac{\Gamma\left[x \mapsto t^{\prime}\right] \vdash e: t}{\Gamma \vdash \lambda x . e: t^{\prime} \rightarrow t}$

$\begin{aligned} & \mathrm{ApP} \\ & \Gamma \vdash e_{1}: t^{\prime} \rightarrow t \end{aligned}$	$\Gamma \vdash e_{2}: t^{\prime}$	$\begin{aligned} & \text { PAIR } \\ & \Gamma \vdash e_{1}: t_{1} \end{aligned}$	$\Gamma \vdash e_{2}: t_{2}$	$\begin{aligned} & \text { Prou } \\ & \Gamma \vdash e \end{aligned}$
$\Gamma \vdash e_{1} e_{2}: t$		$\Gamma \vdash\left(e_{1}, e_{2}\right): t_{1} \times t_{2}$		$\Gamma \vdash$
InJ	$\Gamma \vdash e: t$	Destr		
		$\Gamma \vdash e:(c: \operatorname{Pre} t ; \partial \mathrm{Abs})$		
$\overline{\Gamma \vdash c e:(c: \operatorname{Pre} t ; \partial \mathrm{Abs})}$		$\Gamma \vdash \bar{c} e: t$		

CASE

$$
\Gamma \vdash e: r \quad r \leq\left(C_{1} \cup \ldots \cup C_{n}: * ; \partial \mathrm{Abs}\right)
$$

Sub

$$
\frac{(\forall 1 \leq j \leq n) \quad \Gamma\left[x_{j} \mapsto r_{\mid C_{j}}\right] \vdash e_{j}: t}{\Gamma \vdash e \text { case }\left[C_{1}: x_{1} \mapsto e_{1}|\ldots| C_{n}: x_{n} \mapsto e_{n}\right]: t}
$$

$\frac{\Gamma \vdash e: t^{\prime} \quad t^{\prime} \leq t}{\Gamma \vdash e: t}$

Simple annotated type system

$$
\begin{array}{lll}
\ell \quad \mathcal{L} & \text { information level } \\
t::= & \text { int }^{\ell}|t \rightarrow t| t \times t \mid r^{\ell} & \text { type }
\end{array}
$$

The auxiliary predicate $\ell \triangleleft t$ holds if ℓ guards t :

$$
\begin{gathered}
\frac{\ell \leq \ell^{\prime}}{\ell \triangleleft \text { int }^{\ell^{\prime}}} \quad \frac{\ell \triangleleft t}{\ell \triangleleft t^{\prime} \rightarrow t} \\
\frac{\ell \leq \ell^{\prime}}{\ell \triangleleft r^{\ell^{\prime}}} \quad \ell \triangleleft r \\
\frac{\ell \triangleleft t_{1} \quad \ell \triangleleft t_{2}}{\ell \triangleleft t_{1} \times t_{2}} \\
\frac{\forall c, r(c)=\operatorname{Pre} t \Rightarrow \ell \triangleleft t}{\ell \triangleleft r}
\end{gathered}
$$

Annotated typing rules

$$
\begin{array}{lcl}
\text { INT } \\
\Gamma \vdash k: \text { int }^{\ell} & \begin{array}{l}
\text { INJ } \\
\frac{\text { DESTR }}{} \\
\Gamma \vdash c e:(c: \operatorname{Pret} ; \partial \mathrm{Abs})^{\ell}
\end{array} & \begin{array}{l}
\Gamma \vdash e:(c: \operatorname{Pre} t ; \partial \mathrm{Abs})^{\ell} \\
\Gamma \vdash \bar{c} e: t
\end{array} \\
\begin{array}{c}
\text { CASE } \\
\Gamma \vdash e: r^{\ell} \quad r \leq\left(C_{1} \cup \ldots \cup C_{n}: * ; \partial \mathrm{Abs}\right) \\
\left.\frac{(\forall 1 \leq j \leq n)}{\Gamma \vdash e \operatorname{case}\left[C_{1}: x_{1} \mapsto e_{1} \mid \ldots r_{\mid C_{j}}\right] \vdash e_{j}: t} \quad \ell \triangleleft C_{n}: x_{n} \mapsto e_{n}\right]: t
\end{array}
\end{array}
$$

Other rules remain unchanged.

- Typing λ_{+}and λ_{+}^{2}

Typing brackets

The Bracket rule ensures that the type of every bracket expression is guarded by a "secret" level :

$$
\frac{\begin{array}{l}
\text { BRACKET } \\
\Gamma \vdash e_{1}: t
\end{array} \quad \Gamma \vdash e_{2}: t \quad S e c \triangleleft t}{\Gamma \vdash\left\langle e_{1} \mid e_{2}\right\rangle: t}
$$

Back to the example

if y then A else B :
$$
(A, B: \text { Pre } ; \partial \mathrm{Abs})^{y}
$$

$$
\text { if } z \text { then } A \text { else } D:
$$

$$
(A, D: \operatorname{Pre} ; \partial \mathrm{Abs})^{z}
$$

let $t=$ if x then (if y then A else B) else (if z then A else $D):(A, B, D: \text { Pre; } \partial \mathrm{Abs})^{x, y, z}$

$$
\text { let } u=t \text { case }[A, B \mapsto 1 \mid D \mapsto 0]: \quad \text { int }^{x, y, z}
$$

Fine-grained sum types (1)

In our fine-grained analysis, sum types are not annotated by a simple level but by a matrix of levels.

A matrix q is a family of information levels ℓ indexed by unordered pairs of distinct constructors $c_{1} \cdot c_{2}$:

$$
q::=\left\{c_{1} \cdot c_{2} \mapsto \ell\right\} \quad \text { matrix }
$$

Fine-grained sum types (2)

Sum types consist of a row and a matrix:

$$
\begin{array}{rlr}
q & ::=\left\{c_{1} \cdot c_{2} \mapsto \ell\right\} & \text { matrix } \\
t & ::=\text { int }^{\ell}|t \rightarrow t| t \times t \mid r^{q} & \text { type }
\end{array}
$$

- $r(c)$ indicates if the given expression may (Pret) or may not (Abs) produce a value whose head constructor is c.
- $q\left(c_{1} \cdot c_{2}\right)$ gives an approximation of the level of information leaked by observing that the expression produces a result whose head constructor is c_{1} rather than c_{2}.

Then $q(C)=\sqcup\left\{q\left(c \cdot c^{\prime}\right) \mid c \in C, c^{\prime} \notin C\right\}$ is an approximation of information leaked by testing wether the expression matches C.

Fine-grained guards

We will use constraints of the form

$$
\left[\ell_{1}, \ldots, \ell_{n}\right] \geqq\left[t_{1}, \ldots, t_{n}\right] \leq t
$$

to record potential information flow at a point of the program where the execution path may take one of n possible branches, depending on the result of (a series of) tests.

- The security level ℓ_{j} describes the information revealed by the test which guards the $\mathrm{j}^{\text {th }}$ branch,
- t_{j} is the type of the $\mathrm{j}^{\text {th }}$ branch's result.
- t is the type of the whole expression.

Fine-grained guards (2)

$\left[\ell_{1}, \ldots, \ell_{n}\right] \leqslant\left[\mathrm{int}^{\ell_{1}^{\prime}}, \ldots\right.$, int $\left.^{\ell_{n}^{\prime}}\right] \leq$ int $^{\ell}$ requires $\ell_{1} \sqcup \ldots \sqcup \ell_{n} \leq \ell:$

$$
\frac{\ell_{1}^{\prime} \leq \ell \cdots \ell_{n}^{\prime} \leq \ell \quad \ell_{1} \sqcup \ldots \sqcup \ell_{n} \leq \ell}{\left[\ell_{1}, \ldots, \ell_{n}\right] \leqslant\left[\mathrm{int}^{\ell_{1}^{\prime}}, \ldots, \mathrm{int}_{\ell_{n}^{\prime}}^{\prime}\right] \leq \mathrm{int}^{\ell}}
$$

\Downarrow is propagated on the result type of \rightarrow and the component types of \times :

$$
\begin{gathered}
\frac{t^{\prime} \leq t_{1}^{\prime} \cdots t^{\prime} \leq t_{n}^{\prime} \quad\left[\ell_{1}, \ldots, \ell_{n}\right] \leqslant\left[t_{1}, \ldots, t_{n}\right] \leq t}{\left[\ell_{1}, \ldots, \ell_{n}\right] \leqslant\left[t_{1}^{\prime} \rightarrow t_{1}, \ldots, t_{n}^{\prime} \rightarrow t_{n}\right] \leq t^{\prime} \rightarrow t} \\
\frac{\left[\ell_{1}, \ldots, \ell_{n}\right] \leqslant\left[t_{1}, \ldots, t_{n}\right] \leq t \quad\left[\ell_{1}, \ldots, \ell_{n}\right] \leqslant\left[t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right] \leq t^{\prime}}{\left[\ell_{1}, \ldots, \ell_{n}\right] \lessgtr\left[t_{1} \times t_{1}^{\prime}, \ldots, t_{n} \times t_{n}^{\prime}\right] \leq t \times t^{\prime}}
\end{gathered}
$$

Fine-grained guards (3)

$$
\frac{\begin{array}{c}
{\left[\ell_{1}, \ldots, \ell_{n}\right]}
\end{array}\left[r_{1}, \ldots, r_{n}\right] \leq r \quad q_{1} \leq q \quad \cdots q_{n} \leq q}{\forall j_{1} \neq j_{2}, c_{1} \neq c_{2},\left(r_{j_{1}}\left(c_{1}\right)=\operatorname{Pre} * \wedge r_{j_{2}}\left(c_{2}\right)=\operatorname{Pre} *\right) \Rightarrow \ell_{j_{1}} \sqcup \ell_{j_{2}} \leq q\left(c_{1} \cdot c_{2}\right)}\left[\begin{array}{ll}
\end{array}\right.
$$

If two branches j_{1} and j_{2} of the program may produce different constructors c_{1} and c_{2}, then observing that the program's result is c_{1} and not c_{2} is liable to leak information ($\ell_{j_{1}} \sqcup \ell_{j_{2}}$) about the tests guarding the branches j_{1} and j_{2}.

Typing the case construct

CASE

$$
\begin{gathered}
\Gamma \vdash e: r^{q} \\
r \leq\left(C_{1} \cup \ldots \cup C_{n}: * ; \partial \mathrm{Abs}\right) \\
\forall 1 \leq j \leq n, \Gamma\left[x_{j} \mapsto\left(r^{q}\right)_{\mid C_{j}}\right] \vdash e_{j}: t_{j} \\
\frac{\left[q\left(C_{1}\right), \ldots, q\left(C_{n}\right)\right] \&\left[t_{1}, \ldots, t_{n}\right] \leq t}{\Gamma \vdash e \text { case }\left[C_{1}: x_{1} \mapsto e_{1}|\ldots| C_{n}: x_{n} \mapsto e_{n}\right]: t}
\end{gathered}
$$

Reminder:

- $\left(r^{q}\right)_{\mid C_{j}}$ is the restriction of the type r^{q} to C_{j}
- $q\left(C_{j}\right)=\sqcup\left\{q\left(c \cdot c^{\prime}\right) \mid c \in C_{j}, c^{\prime} \notin C_{j}\right\}$ is an approximation of the information leaked by testing wether the expression matches C_{j}.

Back to the example

if y then A else B :
$(A, B: \operatorname{Pre} ; \partial \mathrm{Abs})^{(A \cdot B: y ; \partial \perp)}$
if z then A else D :
$(A, D: \operatorname{Pre} ; \partial \mathrm{Abs})^{(A \cdot D: z ; \partial \perp)}$
let $t=$ if x then (if y then A else B) else (if z then A else D) :

$$
(A, B, D: \operatorname{Pre} ; \partial \mathrm{Abs})^{(A \cdot B: x, y ; A \cdot D: x, z ; B \cdot D: x ; \partial \perp)}
$$

$$
\text { let } u=t \text { case }[A, B \mapsto 1 \mid D \mapsto 0]: \quad \text { int }^{x, z}
$$

Non-interference

Let us consider an expression e of type int ${ }^{P u b}$ with a "hole" x marked Sec:

$$
(x \mapsto t) \vdash e: \operatorname{int}^{P u b} \quad[\text { Sec }, \text { Sec }] \triangleleft\left[t_{1}, t_{2}\right] \leq t
$$

$$
\begin{aligned}
& \text { Non-interference } \\
& \text { If }\left\{\begin{array} { l }
{ \vdash e _ { 1 } : t _ { 1 } } \\
{ \vdash e _ { 2 } : t _ { 2 } }
\end{array} \text { and } \left\{\begin{array}{l}
e\left[x \Leftarrow e_{1}\right] \rightarrow^{*} k_{1} \\
e\left[x \Leftarrow e_{2}\right] \rightarrow^{*} k_{2}
\end{array} \text { then } k_{1}=k_{2}\right.\right.
\end{aligned}
$$

In words : the result of e's evaluation does not depend on the input value inserted in the hole.
The theorem still applies with a call-by-value semantics.

Sketch of the proof

Why use brackets rather than holes ?

Several previous works uses some kind of holes to represent secret parts of expressions during reduction. However, such an approach does not allow to design accurate semantics rules for case construct :

$$
\square \text { case }\left[\ldots\left|C_{j}: x_{j} \mapsto e_{j}\right| \ldots\right] \rightarrow \begin{cases}\square & \text { (lift-case) } \\ e_{j}[x \Leftarrow \square] & \text { (case) }\end{cases}
$$

Each hole would need to be annotated by something like its type.

About weak non-interference

Our non-interference theorem is a weak result: it requires both expressions $e\left[x \Leftarrow e_{1}\right]$ and $e\left[x \Leftarrow e_{2}\right]$ to converge.
This is made necessary by the fine-grained analysis: it is able to ignore some test conditions. Consider for instance:

$$
e=e^{\prime} \text { case }\left[A:_{_} \mapsto D \mid B:_{_} \mapsto D\right]
$$

(where e^{\prime} has type e^{\prime} type $\left.(A, B: \operatorname{Pre} * ; \partial \mathrm{Abs})^{*}\right)$. The type system statically detects that the result of e^{\prime} s evaluation does not depend on e^{\prime}, although e^{\prime} s termination does. For example, e^{\prime} may be defined as:

$$
e^{\prime}=\Omega \text { case }\left[A:_{_} \mapsto B \mid B:_{_} \mapsto A\right]
$$

Examples

```
let test_A = function
        A _ -> true
        | _ -> false
```

$$
r^{q} \rightarrow \text { bool }^{q(\{A\})}
$$

let rotate $=$ function
A \rightarrow B
$\mid B \rightarrow D$
| D -> A
$(A: \alpha ; B: \beta ; D: \delta ; \partial \mathrm{Abs})^{\left(A \cdot B: \delta^{\prime} ; A \cdot D: \beta^{\prime} ; B \cdot D: \alpha^{\prime} ; \partial \perp\right)}$

$$
\rightarrow(A: \delta ; B: \alpha ; D: \beta ; \partial \mathrm{Abs})^{\left(A \cdot B: \beta^{\prime} ; A \cdot D: \alpha^{\prime} ; B \cdot D: \delta^{\prime} ; \partial \perp\right)}
$$

Examples (2)

```
let f x y z =
    if x then (if y then A else B)
            else (if z then A else D)
```



```
    let g = function
        A | B -> true
    | D -> false
```

 \((A, B, D: \text { Pre } ; \partial \mathrm{Abs})^{(A \cdot D, B \cdot D: \alpha ; *)} \rightarrow \mathrm{bool}^{\alpha}\)
 let $h x y z=g(f x y z)$

$$
\text { bool }^{\alpha} \rightarrow \text { bool }^{\beta} \rightarrow \text { bool }^{\delta} \rightarrow \text { bool }^{\alpha \sqcup \delta}
$$

Examples (3)

Information Flow Analysis
λ-calculus with Sums
Typing λ_{+}and λ_{+}^{2}

- Application to exceptions

Application to exceptions

$\lambda_{\mathcal{E}}$: a λ-calculus with exceptions

$$
\begin{aligned}
& v::=x|k|(v, v) \mid \lambda x . e \\
& \varepsilon v \\
& e::=v|v v| \pi_{j} v \\
& \text { raise } v \\
& E[e] \\
& E::=\quad \text { evaluation context } \\
& \text { bind } x=[] \text { in } e \quad \text { (sequential binding) } \\
& \text { [] handle } \varepsilon x \succ e \quad \text { (handling one exception) } \\
& \text { [] handle } x \succ e \quad \text { (handling all exceptions) }
\end{aligned}
$$

Encoding exceptions into sums

We now assume that constructors c of λ_{+}are exactly the same as exception names ε in $\lambda_{\mathcal{E}}$, with an additional one: η.

We introduce a simple encoding of $\lambda_{\mathcal{E}}$ into $\lambda_{+}^{\mathrm{CBV}}$. It consists in translating every expression e of $\lambda_{\mathcal{E}}$ into an expression $\llbracket e \rrbracket$ of λ_{+}such that:

- If e evaluates to a value v without raising an exception then $\llbracket e \rrbracket$ evaluates to a value of the form $\eta *$ in $\lambda_{+}^{\mathrm{CBV}}$.
- If e raises an exception ε then $\llbracket e \rrbracket$ evaluates to a value $\varepsilon *$ in $\lambda_{+}^{\mathrm{CBV}}$.

Typing exceptions

This encoding allows deriving a type system tracing information flows in $\lambda_{\mathcal{E}}$ from that of λ_{+}.

$$
\begin{aligned}
\mathbf{t} & ::=\text { int }^{\ell}|\mathbf{t} \times \mathbf{t}| \mathbf{t} \rightarrow \mathbf{r}^{\mathbf{q}} \\
\mathbf{a} & ::=\text { Abs } \mid \text { Pre } \mathbf{t} \\
\mathbf{r} & ::=\{c \mapsto \mathbf{a}\} \\
\mathbf{q} & ::=\left\{c_{1} \cdot c_{2} \mapsto \ell\right\}
\end{aligned}
$$

Judgements about values: $\quad \Gamma \vdash v: \mathrm{t}$
Judgements about expressions: $\quad \Gamma \Vdash e: \mathbf{r}^{\mathbf{q}}$

We obtain rules for exceptions similar to those of sums.

Encoding existing systems

Previous type systems tracing information flows in language equipped with exceptions [Myers 99, Pottier and Simonet 02] may be encoded as a restriction of this new one.
These systems have been designed in a direct manner and are relatively $a d$-hoc. They involve a simple vector v (instead of a matrix) giving only one information level for each available exception.

Each entry of the vector correspond in our system to the union of one line (or one column) of the matrix:

$$
v(c)=q(\{c\})=\sqcup\left\{q\left(c \cdot c^{\prime}\right) \mid c^{\prime} \neq c\right\}
$$

Conclusion

Because of the structure of security annotations involving matrices of levels, an implementation of this framework is likely to produce very verbose type schemes. Thus, it seems difficult to use it as the basis of a generic secure programming language. Nevertheless:

- From a theoretical point of view, it allows a better understanding of ad-hoc previous works on exceptions. To some extent, it may explain their design choices.
- From a practical point of view, it might be of interest for automated analysis of very sensitive part of programs (relatively to information flow) for which standard systems remain too approximative. More experience in this area is however required before going further.

